
Word Embeddings: History &
Behind the Scene

Alfan F. Wicaksono
Information Retrieval Lab.

Faculty of Computer Science
Universitas Indonesia

References

• Bengio, Y., Ducharme, R., Vincent, P., & Janvin, C.
(2003). A Neural Probabilistic Language Model. The
Journal of Machine Learning Research, 3, 1137–1155.

• Mikolov, T., Corrado, G., Chen, K., & Dean, J. (2013).
Efficient Estimation of Word Representations in Vector
Space. Proceedings of the International Conference on
Learning Representations (ICLR 2013), 1–12

• Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013).
Distributed Representations of Words and Phrases and
their Compositionality. NIPS, 1–9.

• Morin, F., & Bengio, Y. (2005). Hierarchical Probabilistic
Neural Network Language Model. Aistats, 5.

References

Good weblogs for high-level understanding:

• http://sebastianruder.com/word-embeddings-1/

• Sebastian Ruder. On word embeddings - Part 2:
Approximating the Softmax. http://sebastianruder.com/word-
embeddings-softmax

• https://www.tensorflow.org/tutorials/word2vec

• https://www.gavagai.se/blog/2015/09/30/a-brief-history-of-
word-embeddings/

Some slides were also borrowed from From Dan Jurafsky’s
course slide: Word Meaning and Similarity. Stanford University.

http://sebastianruder.com/word-embeddings-1/
http://sebastianruder.com/word-embeddings-softmax
https://www.tensorflow.org/tutorials/word2vec
https://www.gavagai.se/blog/2015/09/30/a-brief-history-of-word-embeddings/

Terminology

• The term “Word Embedding” came from deep
learning community

• For computational linguistic community, they prefer
“Distributional Semantic Model”

• Other terms:
– Distributed Representation

– Semantic Vector Space

– Word Space

https://www.gavagai.se/blog/2015/09/30/a-brief-history-of-word-embeddings/

Before we learn Word Embeddings...

Semantic Similarity

• Word Similarity
– Near-synonyms

– “boat” and “ship”, “car” and “bicycle”

• Word Relatedness
– Can be related any way

– Similar: “boat” and “ship”

– Topical Similarity:
• “boat” and “water”

• “car” and “gasoline”

Why Word Similarity?

• Document Classification

• Document Clustering

• Language Modeling

• Information Retrieval

• ...

How to compute word similarity?

• Thesaurus-based Approach
– Using lexical resource, such as WordNet, to compute

similarity between words

– for example, two terms are similar if their glosses
contain similar words

– For example, two terms are similar if they are near
each other in the thesaurus hierarchy

• Distributional-based Approach
– Do words have similar distributional contexts?

Thesaurus-based Approach

• Path-based similarity

• Two terms are similar if they are near each other in
the thesaurus hierarchy

Hypernym Graph

Thesaurus-based Approach

Other Approach:

• Resnik. 1995, using information content to
evaluate semantic similarity in a taxonomy.
IJCAI.

• Dekang Lin. 1998. An information-theoretic
definition of similarity. ICML.

• Lesk Algorithm

Thesaurus-based Approach

Problems...

• We don’t have a thesaurus for every language

• For Indonesian, our WordNet is not complete

– Many words are missing

– Connections between senses are missing

– ...

Distributional-based Approach

• Based on the idea that contextual information alone
constitutes a viable representation of linguistic items.

• As opposed to formal lingustics and the Chomsky
tradition.

• Zellig Haris (1954): “...if A and B have almost
identical environments, we say that they are
synonyms...”

Word Embeddings are based on this idea!

Distributional-based Approach

A bottle of is on the table
Everybody likes tesgüino
Tesgüino makes you drunk
We make tesgüino out of corn

• From context words humans can guess tesgüino means
• an alcoholic beverage Like beer

• Intuition for algorithm:
• Two words are similar if they have similar word contexts

From Dan Jurafsky’s course slide: Word Meaning and Similarity

tesgüino

Distributional-based Approach

Suppose, in our large corpus, we have:

... sepertinya berita tidak begitu disukai oleh ...

... mungkin mereka tidak mengira bahwa selama ini ...

... gw nggak mengira kalau selama ini ...

... menurut gw berita itu nggak begitu adil sih ...

Suppose you don’t know the meaning of “nggak”, but you know “tidak”.

Can your infer something about “tidak” and “nggak” ?...and why?

Why Word Embeddings?

• Word representations are a critical component of many
NLP systems. It is common to represent words as
indices in a vocabulary, but this fails to capture the rich
relational structure of the lexicon.
– Representing words as unique, discrete ids furthermore

leads to data sparsity, and usually means that we may
need more data in order to successfully train statistical
models

• Vector-based models do much better in this regard.
They encode continuous similarities between words as
distance or angle between word vectors in a high-
dimensional space.

Why Word Embeddings?

• Can capture the rich relational structure of the
lexicon

https://www.tensorflow.org/tutorials/word2vec

Word Embeddings

• Any technique that maps a word (or phrase) from it’s original
high-dimensional sparse input space to a lower-dimensional
dense vector space.

• Vectors whose relative similarities correlate with semantic
similarity

• Such vectors are used both as an end in itself (for computing
similarities between terms), and as a representational basis
for downstream NLP tasks, such as POS tagging, NER, text
classification, etc.

Continuous Representation of Words

• In research on Information Retrieval and Topic Modeling
– Simple Vector Space Model (Sparse)
– Latent Semantic Analysis
– Probabilistic LSA
– Latent Dirichlet Allocation

• [Distributional Semantic]
– VSMs, LSA, SVD, etc.
– Self Organizing Map
– Bengio et al’s Word Embedding (2003)
– Mikolov et al’s Word2Vec (2013)
– Pennington et al’s GloVe (2014)

The first use neural
“word embedding”

“word embedding”
becomes popular!

Continuous Representation of Words

The Differences:

• In information retrieval, LSA and topic models
use documents as contexts.

– Capture semantic relatedness (“boat” and “water”)

• Distributional semantic models use words as
contexts (more natural in linguistic perspective)

– Capture semantic similarity (“boat” and “ship”)

Word Embedding

Distributional Semantic Models

Other classification based on (Baroni et al., ACL 2014)

• Count-based models
– Simple VSMs

– LSA

– Singular Value Decomposition (Golub & VanLoan, 1996)

– Non-negative Matrix Factorization (Lee & Seung, 2000)

• Predictive-based models (neural network)
– Self Organizing Map

– Bengio et al’s Word Embedding (2003)

– Mikolov et al’s Word2Vec (2013)

Baroni et la., “Don’t count, predict! A systematic comparison of context-counting vs. context-
predicting semantic vectors”. ACL 2014

DSMs or Word Embeddings

• Count-based model

– first collecting context vectors and then reweighting
these vectors based on various criteria

• Predictive-based model (neural network)

– vector weights are directly set to optimally predict the
contexts in which the corresponding words tend to
appear

– Similar words occur in similar contexts, the system
naturally learns to assign similar vectors to similar
words.

DSMs or Word Embeddings

• There is no need for deep neural networks in order
to build good word embeddings.

– the Skipgram and CBoW models included in the word2vec
library – are shallow neural networks

• There is no qualitative difference between
(current) predictive neural network models and
count-based distributional semantics models.

– they are different computational means to arrive at the
same type of semantic model

https://www.gavagai.se/blog/2015/09/30/a-brief-history-of-word-embeddings/

https://code.google.com/p/word2vec/

Vector Space Model

Term-Document Matrix

D1 D2 D3 D4 D5

ekonomi 0 1 40 38 1

pusing 4 5 1 3 30

keuangan 1 2 30 25 2

sakit 4 6 0 4 25

inflasi 8 1 15 14 1

Vector of D2 = [1, 5, 2, 6, 1]

Each cell is the count of word t in document d

Vector Space Model

Term-Document Matrix

D1 D2 D3 D4 D5

ekonomi 0 1 40 38 1

pusing 4 5 1 3 30

keuangan 1 2 30 25 2

sakit 4 6 0 4 25

inflasi 8 1 15 14 1

Two documents are similar if they have similar vector!
D3 = [40, 1, 30, 0, 15]
D4 = [38, 3, 25, 4, 14]

Each cell is the count of word t in document d

Vector Space Model

Term-Document Matrix

D1 D2 D3 D4 D5

ekonomi 0 1 40 38 1

pusing 4 5 1 3 30

keuangan 1 2 30 25 2

sakit 4 6 0 4 25

inflasi 8 1 15 14 1

Vector of word “sakit” = [4, 6, 0, 4, 25]

Each cell is the count of word t in document d

Vector Space Model

Term-Document Matrix

D1 D2 D3 D4 D5

ekonomi 0 1 40 38 1

pusing 4 5 1 3 30

keuangan 1 2 30 25 2

sakit 4 6 0 4 25

inflasi 8 1 15 14 1

Two words are similar if they have similar vector!
pusing = [4, 5, 1, 3, 30]
sakit = [4, 6, 0, 4, 25]

Each cell is the count of word t in document d

Vector Space Model

Term-Context Matrix
• Previously, we use entire Documents as our Context of word

– document-based models capture semantic relatedness (e.g. “boat” –
“water”), NOT semantic similarity (e.g. “boat” – “ship”)

• We can get precise vector representation of word (for
semantic similarity task) if we use smaller context, i.e, Words
as our Context!
– Window of N words

• A word is defined by a vector of over counts of context
words.

Vector Space Model

Sample context of 4 words ...

No Potongan konteks 4 kata

1 ... kekuatan ekonomi dan inflasi ...

2 ... obat membuat sakit pusing ...

3 ... sakit pening di kepala ...

4 ... keuangan menipis serta inflasi ...

5 ...

Vector Space Model

Term-Context Matrix

• Sample context of 4 words ...

ekonomi obat sakit kepala keuangan ...

inflasi 2 0 0 0 3 ...

pusing 0 1 6 6 1 ...

pening 0 2 6 6 0 ...

keuangan 2 0 0 0 4 ...

...

Two words are similar in meaning if they have similar context vector!
Context Vector of “pusing” = [0, 1, 6, 6, 1, ...]
Context Vector of “pening” = [0, 2, 6, 6, 0, ...]

Vector Space Model

• Weighting: it practically works well... instead of
just using raw counts.

• For Term-Document matrix

– We usually use TF-IDF, instead of Raw Counts (only
TF)

• For Term-Context matrix

– We usually use Pointwise Mutual Information (PMI)

Word Analogy Task

• Father is to Mother as King is to _____ ?

• Good is to Best as Smart is to _____ ?

• Indonesia is to Jakarta as Malaysia is to ____ ?

• It turns out that the previous Word-Context based
vector model is good for such analogy task.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Distributed Representations of
Words and Phrases and their Compositionality. NIPS, 1–9

Vking – Vfather + Vmother = Vqueen

Word Embeddings for Information Retrieval

• The two passages are
indistinguishable for the
query term “Albuquerque”!
– Both contains the same

number of “Albuquerque”, i.e.
Only one!

• Word embeddings can help
us to distinguish them!

• Which one is the real one
talking about
“Albuquerque”??
– #terms in the document

related to “Albuquerque”

Nalisnick et al., “Improving Document Ranking with Dual Word Embedding”, WWW 2016

Some basics …

Gradient Descent (GD)
Problem: carilah nilai x sehingga fungsi f(x) = 2x4 + x3 – 3x2

mencapai titik local minimum.

Misal, kita pilih x dimulai dari x=2.0:

Local minimum

Algoritma GD konvergen
pada titik x = 0.699, yang
merupakan local minimum.

Gradient Descent (GD)

Algorithm:

"")()(

""

int"")('

)('

:...,,2,1

1

1

1

1

max

divergingreturnthenxfxfIf

valuexonconvergedreturnthenxxIf

pocriticalonconvergedreturnthenxfIf

xfxx

NtFor

tt

tt

t

tttt

























αt : learning rate atau step size pada iterasi ke-t
ϵ: sebuah bilangan yang sangat kecil
Nmax: batas banyaknya iterasi, atau disebut epoch jika iterasi selalu sampai akhir

Algoritma dimulai dengan menebak nilai x1 !

Tips: pilih αt yang tidak terlalu kecil, juga tidak terlalu besar.

Gradient Descent (GD)
Kalau parameter-nya ada banyak ?

Carilah θ = θ1, θ2, …, θn sehingga f(θ1, θ2, …, θn) mencapai local
minimum !

)(

)(

)(

:

)(

)(

)()1(

)(

)(

2

)(

2

)1(

2

)(

)(

1

)(

1

)1(

1

t

t

n

t

t

n

t

n

t

tt

tt

t

tt

tt

f

f

f

convergednotwhile







































Dimulai dengan menebak
nilai awal θ = θ1, θ2, …, θn

Multilayer Neural Network (Multilayer Perceptron)

Misal, ada 3-layer NN, dengan 3 input unit, 2 hidden unit,
dan 2 output unit.

x1

x2

x3

+1

+1

𝑊11
(1)

𝑊21
(1)

𝑊12
(1)

𝑊22
(1)

𝑊13
(1)

𝑊23
(1)

𝑏1
(1) 𝑏2

(1)

𝑊11
(2)

𝑊12
(2)

𝑊21
(2)

𝑊22
(2)

𝑏1
(2) 𝑏2

(2)

W(1), W(2), b(1), b(2) adalah parameter !

Multilayer Neural Network (Multilayer Perceptron)

Misal, untuk activation function, kita gunakan fungsi
hyperbolic tangent.

Untuk menghitung output di hidden layer:

)tanh()(xxf 

)1(

23

)1(

232

)1(

221

)1(

21

)2(

2

)1(

13

)1(

132

)1(

121

)1(

11

)2(

1

bxWxWxWz

bxWxWxWz





)(

)(

)2(

2

)2(

2

)2(

1

)2(

1

zfa

zfa





Ini hanyalah perkalian matrix !





































)1(

2

)1(

1

3

2

1

)1(

23

)1(

22

)1(

21

)1(

13

)1(

12

)1(

11)1()1()2(

b

b

x

x

x

WWW

WWW
bxWz

Multilayer Neural Network (Multilayer Perceptron)

Jadi, Proses feed-forward secara keseluruhan hingga
menghasilkan output di kedua output unit adalah:

)(ax)(

)(

)3()3(

,

)2()2()2()3(

)2()2(

)1()1()2(

zsoftmaxh

baWz

zfa

bxWz

bW 










i

(3)

i

(3)

i(3)

i
)exp(z

)exp(z
a

f

softmax

Par: W(1)

Par: W(2)

Par: b(1)

Par: b(2)

x

a(3)

Multilayer Neural Network (Multilayer Perceptron)

Learning

Misal, Cost function kita adalah cross-entropy loss:

m adalah banyaknya training examples.




   




1

1 1 1

2)(

,

1

,

1

)(
2

)(log
1

),(
l l ln

l

s

i

s

j

l

jiji

m

i Cj

ji Wpy
m

bWJ


Regularization terms

Multilayer Neural Network (Multilayer Perceptron)

Learning

Batch Gradient Descent

inisialisasi W, b

while not converged :

),(

),(

)(

)()(

)(

)()(

bWJ
b

bb

bWJ
W

WW

l

i

l

i

l

i

l

ij

l

ij

l

ij















Bagaimana cara menghitung
gradient ??

Backpropagation Algorithm

Neural Language Model (Bengio et al., 2003)

Main Goal: Language Model

Actually, their main goal is to develop a language model, i.e., conditional
probability of the next word given all the previous ones:

So that, we can compute the likelihood of a whole document or sentence by
the product of the probabilies each word given its previous words:

Given a document or sentence

)...|(1221 wwwwwP ttt 




 
T

t

ttTT wwwwPwwwwP
1

121121)...|()...(

TT wwwww ,,...,,, 1321 

N-Gram Language Model

In N-Gram language model, we often relax the conditional
probability of a word into just its n-1 previous words (Markov
Assumption):

For example, using Bi-Gram:

Using MLE, we can estimate the parameter using Frequency
Counts:

)...|()...|(1111   nttttt wwwPwwwP

)|()|()|()|()|(

),,,(

embeddingendPwordembeddingPlearnwordPilearnPstartiP

embeddingwordlearniP





)...(

)...(
)...|(

11

11
11




 

ntt

nttt
nttt

wwcount

wwwcount
wwwP



Problem with N-Gram

• There should be much more information in the sequence that
immediately precedes the word to predict than just the
identity of the previous couple of words.

• It’s NOT taking into account the “similarity” between words.

• For example, in the training data:

• Then, the model should generalize for the following sentence:

The cat is walking in the bedroom

A dog was running in a room

WHY ? Dog-Cat, The-A, Bedroom-Room have similar semantic and grammatical roles !

Neural Language Model

Given a document or sentence

Where each word belongs to a Vocabulary,

We want to learn good model for:

TT wwwww ,,...,,, 1321 

Vwi 












Vj

j

t

t

ntttnttt

contextwscore

contextwscore

contextwscoresoft

wwwPwwwf

)),(exp(

)),(exp(

)),(max(

)...|(),...,,(1111

11,...,  tnt wwcontext

Neural Language Model

))(),...,(,(

)|(),...,,(

11

11









ntt

tntt

wCwCig

contextiwPwwif

We have Embedding/Projection Matrix

g is a neural network function.

mVC ||

m is size of word vector.

mRiC )(

C(i) is a function that maps A Word i
into Its Vector



















......

......

......

......

||V

m

Score for a particular output:

Merge (concat vector)



















......

......

......

......

||V

m

1ntw 2tw 1tw

Feed-Forward Process

tanh

softmax

Par: C

Par: H

Par: W

Par: U

Par: d

Par: b




 

Vi

i

w

nttt
y

y
wwwP t

)exp(

)exp(
)...|(11

)tanh(HxdUWxby
tw 

))(),...,((11  ntt wCwCconcatx

Total Parameters:

),,,,,(CHUWdb

mnh

mnV

mV

hV

RH

RW

RC

RU

)1(

)1(||

||

||















 ||VRb

hRd 

)...|(11  nttt wwwP

Output
Layer

Hidden
Layer

Projection
Layer

Input
Layer

Merge (concat vector)



















......

......

......

......

||V

m

1ntw 2tw 1tw

Training

tanh

softmax

Par: C

Par: H

Par: W

Par: U

Par: d

Par: b

How? We can use Gradient Ascent!

Iterative update using the following formula:

Training is achieved by looking θ that maximizes
the following Cost Function:

Given training data TT wwwww ,,...,,, 1321 




 
T

t

ntttT Rwwwf
T

wwJ
1

111)();,...,,(log
1

);...(

Regularization terms

);...(: 1 


 T

oldnew wwJ





Learning rate

)...|(11  nttt wwwP

Output
Layer

Hidden
Layer

Projection
Layer

Input
Layer

Where are the Word Embeddings?

• The previous model actually aims at building the
language model.

– So, where is the Word Embedding model that we need?

• The answer is: If you just need the Word
Embedding model, you just need the matrix C


Where are the Word Embeddings?

• After all parameters (including C) are optimized, then
we can use C to map a word into its vector !



















......

......

......

......

||V

m

mVRC  ||

A Word w

Vw

mRwC )(





















76.0

31.0

2.0

)(


wC

Problem?

Merge (concat vector)



















......

......

......

......

||V

m

1ntw 2tw 1tw

tanh

softmax

Par: C

Par: H

Par: W

Par: U

Par: d

Par: b

)...|(11  nttt wwwP

Computation in this area is very COSTLY!

Size of Vocabulary can reach 100.000 !

(Mikolov et al., 2013)
Computational Complexity of this model
per each training sample:

|)|()()(VhhmNmNQ 

Dominating Term!

Composition of projection layer
N words X size of vector m

Between projection
layer & hidden layer

Word2Vec (Mikolov et al., 2013)

Word2Vec

• One of the most popular Word Embedding models
nowadays!

• Computationally less expensive compared to the
previous model

• There are two types of models:

– Continuous Bag of Words Model (CBOW)

– Skip-Gram Model

Continuous Bag-of-Words

• Bengio’s language model only
looks at previous words as a
context for predictions.

• Mikolov’s CBOW looks at n words
before and after the target words.
– Non-linear hidden layer is also

removed.

– All word vectors get projected into the
same position (their vectors are
averaged)

• “Bag-of-Words” is because the
order of words in the history does
not influence the projection.

)......|(11 ntttntt wwwwwP 
We seek a model for

Continuous Bag-of-Words

Merge (average)



















......

......

......

......

||V

m

ntw  1tw ntw 

Projection
Layer

Input
Layer

1tw 

softmax

Feed-Forward Process




 

Vi

i

w

ntttntt
y

y
wwwwwP t

)exp(

)exp(
)......|(11

Wxby
tw 

))(),(),...,(),((11 ntttnt wCwCwCwCaveragex 

Total Parameters:

),,(CWb

)...|(11 ntttntt wwwwwP 

Par: W

Par: b

Par: C

mnV

mV

RW

RC

)2(||

||









Output
Layer

Continuous Bag-of-Words

Merge (average)



















......

......

......

......

||V

m

ntw  1tw ntw 

Projection
Layer

Input
Layer

1tw 

softmax

Training)...|(11 ntttntt wwwwwP 

Par: W

Par: b

Par: C

Training is achieved by looking θ that maximizes
the following Cost Function:

Given training data TT wwwww ,,...,,, 1321 




 
T

t

ntttnttT RwwwwwP
T

wwJ
1

111)()......|(log
1

);...(

Regularization terms

Output
Layer

Continuous Bag-of-Words

Merge (average)



















......

......

......

......

||V

m

ntw  1tw ntw 

Projection
Layer

Input
Layer

1tw 

Hierarchical Softmax

Training)...|(11 ntttntt wwwwwP 

Actually, if we use vanilla softmax, then the
computational complexity is still costly.

|)|()2(VmmNQ 

Output
Layer

To solve this problem, they use Hierarchical
Softmax layer. This layer uses a binary tree
representation of the output layer with |V|
units.

|))log(|()2(2 VmmNQ 

(Morin & Bengio, 2005)

Skip-Gram

• Instead of predicting the current
word based on the context, it tries
to maximize classification of a word
based on another word in the
same sentence.

• Use each current word as an input
to a log-linear classifier with
continuous projection layer, and
predict words within a certain
range before and after the current
word.

We seek a model for)|(tjt wwP 

Skip-Gram



















......

......

......

......

||V

m

tw

Projection
Layer

Input
Layer

softmax

)|(tjt wwP 

Par: W

Par: b

Par: C

Output
Layer

Feed-Forward Process









Vi

i

w

tjt
y

y
wwP

jt

)exp(

)exp(
)|(

Wxby
jtw 



)(twCx 

Total Parameters:

),,(CWb

mV

mV

RW

RC









||

|| ||VRb

Skip-Gram



















......

......

......

......

||V

m

tw

Projection
Layer

Input
Layer

softmax

)|(tjt wwP 

Par: W

Par: b

Par: C

Output
Layer

Training

Training is achieved by looking θ that maximizes
the following Cost Function:

Given training data TT wwwww ,,...,,, 1321 

 
 

 
T

t jcjc

tjt

T

RwwP
T

wwJ

1 0,

1

)()|(log
1

);...(





Regularization Terms

c is the maximum distance of the words, or WINDOW size

Skip-Gram

How to develop dataset?

For example, let’s consider the following dataset:

the quick brown fox jumped over the lazy dog

Using c = 1 (or window = 1), we then have dataset:

([the, brown], quick), ([quick, fox], brown), ([brown, jumped], fox), ...

Therefore, our (input, output) dataset becomes:

(quick, the), (quick, brown), (brown, quick), (brown, fox), ...

Reference: https://www.tensorflow.org/tutorials/word2vec

Use this dataset to learn

So that, the cost function is optimized!

)|(tjt wwP 

 
 


T

t jcjc

tjtT wwP
T

wwJ
1 0,

1)|(log
1

);...(

)|(1 quickwbrownwP tt 
For example,

Skip-Gram



















......

......

......

......

||V

m

tw

Projection
Layer

Input
Layer

Hierarchical Softmax

)|(tjt wwP 

Par: C

Output
Layer

Training

Actually, if we use vanilla softmax, then the
computational complexity is still costly.

|)|(VmmCQ 

To solve this problem, they use Hierarchical
Softmax layer. This layer uses a binary tree
representation of the output layer with |V|
units.

|))log(|(2 VmmCQ 

(Morin & Bengio, 2005)

Word2Vec + H-Softmax + Noise Contrastive
Estimation (Mikolov et al., 2013)

Previously

• Standard CBOW and Skip-gram models use standard flat softmax layer in
the output.

• This is very expensive, because we need to compute and normalize each
probability using the score for all other words in the Vocabulary in the
current context, at every training step.

SOURCE: https://www.tensorflow.org/tutorials/word2vec

This picture is only CBOW.

https://www.tensorflow.org/tutorials/word2vec

Solution?

• In the first paper, Mikolov et al. (2013) use Hierarchical
Softmax Layer (Morin & Bengio, 2005).

• H-Softmax replaces the flat softmax layer with a hierarchical
layer that has the words as leaves.

• This allows us to decompose calculating the probability of one
word into a sequence of probability calculations, which saves
us from having to calculate the expensive normalization over
all words.

Sebastian Ruder. On word embeddings - Part 2: Approximating the
Softmax. http://sebastianruder.com/word-embeddings-softmax

http://sebastianruder.com/word-embeddings-softmax

H-Softmax

• We can reason that at a tree's root node (Node 0), the probabilities of branching
decisions must sum to 1.

• At each subsequent node, the probability mass is then split among its children,
until it eventually ends up at the leaf nodes, i.e. the words.

Sebastian Ruder. On word embeddings - Part 2: Approximating the
Softmax. http://sebastianruder.com/word-embeddings-softmax

We can now calculate the
probability of going right
(or left) at a given node n
given the context c.

vn is embedding in node n.

).(),|(nvWcnrightP 

),|(1),|(cnrightPcnleftP 

http://sebastianruder.com/word-embeddings-softmax

H-Softmax

• The probability of a word w given its context c, is then simply the product of the
probabilities of taking right and left turns respectively that lead to its leaf node.

Sebastian Ruder. On word embeddings - Part 2: Approximating the
Softmax. http://sebastianruder.com/word-embeddings-softmax

(Hugo Lachorelle's Youtube lectures)

https://www.youtube.com/watch?v=B95LTf2rVWM

http://sebastianruder.com/word-embeddings-softmax
https://www.youtube.com/watch?v=B95LTf2rVWM

Noise Contrastive Estimation (NCE)

• In their second paper, the CBOW and skip-gram models are instead trained
using a binary classification objective (logistic regression) to discriminate
the real target words wt from k imaginary (noise) words w.

NCE in the output
layer, for CBOW.

SOURCE: https://www.tensorflow.org/tutorials/word2vec

https://en.wikipedia.org/wiki/Logistic_regression
https://www.tensorflow.org/tutorials/word2vec

