Word Embeddings: History &
Behind the Scene

Alfan F. Wicaksono
Information Retrieval Lab.
Faculty of Computer Science
Universitas Indonesia

References

Bengio, Y., Ducharme, R., Vincent, P, & Janvin, C.
(2003). A Neural Probabilistic Language Model. The
Journal of Machine Learning Research, 3, 1137-1155.

Mikolov, T., Corrado, G., Chen, K., & Dean, J. (2013).
Efficient Estimation of Word Representations in Vector

Space. Proceedings of the International Conference on
Learning Representations (ICLR 2013), 1-12

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013).
Distributed Representations of Words and Phrases and
their Compositionality. NIPS, 1-9.

Morin, F., & Bengio, Y. (2005). Hierarchical Probabilistic
Neural Network Language Model. Aistats, 5.

References

Good weblogs for high-level understanding:

http://sebastianruder.com/word-embeddings-1/

Sebastian Ruder. On word embeddings - Part 2:

Approximating the Softmax. http://sebastianruder.com/word-
embeddings-softmax

https://www.tensorflow.org/tutorials/word2vec

https://www.gavagai.se/blog/2015/09/30/a-brief-history-of-
word-embeddings/

Some slides were also borrowed from From Dan Jurafsky’s
course slide: Word Meaning and Similarity. Stanford University.

http://sebastianruder.com/word-embeddings-1/
http://sebastianruder.com/word-embeddings-softmax
https://www.tensorflow.org/tutorials/word2vec
https://www.gavagai.se/blog/2015/09/30/a-brief-history-of-word-embeddings/

Terminology

e The term “Word Embedding” came from deep
learning community

 For computational linguistic community, they prefer
“Distributional Semantic Model”

e Other terms:

— Distributed Representation
— Semantic Vector Space
— Word Space

https://www.gavagai.se/blog/2015/09/30/a-brief-history-of-word-embeddings/

Before we learn Word Embeddings...

Semantic Similarity

 Word Similarity
— Near-synonyms
— “boat” and “ship”, “car” and “bicycle”

 Word Relatedness
— Can be related any way
— Similar: “boat” and “ship”
— Topical Similarity:
* “boat” and “water”
e “car” and “gasoline”

Why Word Similarity?

Document Classification
Document Clustering
language Modeling

nformation Retrieval

How to compute word similarity?

 Thesaurus-based Approach

— Using lexical resource, such as WordNet, to compute
similarity between words

— for example, two terms are similar if their glosses
contain similar words

— For example, two terms are similar if they are near
each other in the thesaurus hierarchy

* Distributional-based Approach
— Do words have similar distributional contexts?

Thesaurus-based Approach

* Path-based similarity

 Two terms are similar if they are near each other in
the thesaurus hierarchy

1

simpath(c;,c,) =
pathlen(c,,c,) 8 .~ scale
wordsim(w,w,) = max sim(c,c,) &
¢,Esenses(w).c,Esenses(w,) 6 currency money Richter scale

simpath(nickel,coin) = 1/2 = .5 coinage fund

S]mpath(fund,budggt) =1/2=.5 / \

simpath(nickel currency) = 1/4 = .25 ‘ L coin budget

“iickel dime Hypernym Graph

Dan Jurafsky

Thesaurus-based Approach

Other Approach:

* Resnik. 1995, using information content to
evaluate semantic similarity in a taxonomy.
|JCAI.

* Dekang Lin. 1998. An information-theoretic
definition of similarity. ICML.

* Lesk Algorithm

Thesaurus-based Approach

Problems...
 We don’t have a thesaurus for every language

* For Indonesian, our WordNet is not complete
— Many words are missing
— Connections between senses are missing

Distributional-based Approach

* Based on the idea that contextual information alone
constitutes a viable representation of linguistic items.

 As opposed to formal lingustics and the Chomsky
tradition.

e Zellig Haris (1954): “..if A and B have almost
identical environments, we say that they are
synonyms...”

Word Embeddings are based on this idea!

Distributional-based Approach

A bottle of tesgiiino |is on the table
Everybody likes tesgiiino

Tesgiiino makes you drunk

We make tesgliino out of corn

From context words humans can guess tesgiiino means
* an alcoholic beverage Like beer
Intuition for algorithm:

* Two words are similar if they have similar word contexts

From Dan Jurafsky’s course slide: Word Meaning and Similarity

Distributional-based Approach

Suppose, in our large corpus, we have:

.. sepertinya berita tidak begitu disukai oleh ...
.. mungkin mereka tidak mengira bahwa selama ini ...

.. gw nggak mengira kalau selama ini ...

.. menurut gw berita itu nggak begitu adil sih ...

Suppose you don’t know the meaning of “nggak”, but you know “tidak”.

Can your infer something about “tidak” and “nggak” ?...and why?

Why Word Embeddings?

 Word representations are a critical component of many

NLP systems. It is common to represent words as

indices in a vocabulary, but this fails to capture the rich
relational structure of the lexicon.

— Representing words as unique, discrete ids furthermore

leads to data sparsity, and usually means that we may

need more data in order to successfully train statistical
models

* Vector-based models do much better in this regard.
They encode continuous similarities between words as
distance or angle between word vectors in a high-
dimensional space.

[1] Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y. & Potts, C. Learning word vectors for sentiment
analysis. Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies-Volume 1, 2011. Association for Computational Linguistics, 142-150.

Why Word Embeddings?

* Can capture the rich relational structure of the
lexicon

in
a \ ri
Germany e Rom
— walked Dart
. ‘ Turkey \
.. Ank
@) SSe woman
y swam i
king) O PRSI | il Moscow
T2 walking . Canada Ottaw
_\queen> e . Japan T 1okyo
/ / o Vietnam Hanoi
swimming China Beijing
Male-Female Verb tense Country-Capital

https://www.tensorflow.org/tutorials/word2vec

Word Embeddings

* Any technigue that maps a word (or phrase) from it’s original
high-dimensional sparse input space to a lower-dimensional
dense vector space.

* Vectors whose relative similarities correlate with semantic
similarity

e Such vectors are used both as an end in itself (for computing
similarities between terms), and as a representational basis
for downstream NLP tasks, such as POS tagging, NER, text
classification, etc.

Continuous Representation of Words

* |n research on Information Retrieval and Topic Modeling
— Simple Vector Space Model (Sparse)
— Latent Semantic Analysis

— Probabilistic LSA The first use neural
— Latent Dirichlet Allocation “word embedding”

e [Distributional Semantic]
— VSMis, LSA, SVD, etc.
— Self Organizing Map
— Bengio et al’'s Word Embedding (2003)
— Mikolov et al’s Word2Vec (2013)

— Pennington et al’s GloVe (2014) \ “word embedding”

becomes popular!

Continuous Representation of Words

The Differences:

* In information retrieval, LSA and topic models
use documents as contexts.

— Capture semantic relatedness (“boat” and “water”)

* Distributional semantic models use words as
contexts (more natural in linguistic perspective)

— Capture semantic similarity (“boat” and “ship”)

/

Word Embedding

Distributional Semantic Models

Other classification based on (Baroni et al., ACL 2014)

 Count-based models

— Simple VSMs

— LSA

— Singular Value Decomposition (Golub & VanLoan, 1996)

— Non-negative Matrix Factorization (Lee & Seung, 2000)
* Predictive-based models (neural network)

— Self Organizing Map

— Bengio et al’'s Word Embedding (2003)

— Mikolov et al’s Word2Vec (2013)

Baroni et la., “Don’t count, predict! A systematic comparison of context-counting vs. context-
predicting semantic vectors”. ACL 2014

DSMs or Word Embeddings

* Count-based model

— first collecting context vectors and then reweighting
these vectors based on various criteria

* Predictive-based model (neural network)

— vector weights are directly set to optimally predict the
contexts in which the corresponding words tend to

appear

— Similar words occur in similar contexts, the system
naturally learns to assign similar vectors to similar
words.

DSMs or Word Embeddings

 There is no need for deep neural networks in order
to build good word embeddings.

— the Skipgram and CBoW models included in the word2vec
library — are shallow neural networks

* There is no qualitative difference between
(current) predictive neural network models and
count-based distributional semantics models.

— they are different computational means to arrive at the
same type of semantic model

https://www.gavagai.se/blog/2015/09/30/a-brief-history-of-word-embeddings/

https://code.google.com/p/word2vec/

Vector Space Model

Term-Document Matrix

Each cell is the count of word t in document d

D1 D2 D3 D4
ekonomi 0 1 40 38
pusing 4 5 1 3
keuangan 1 2 30 25
sakit 4 6 0 4
inflasi 8 1 15 14

Vectorof D2 =1, 5, 2, 6, 1]

Vector Space Model

Term-Document Matrix

Each cell is the count of word t in document d

D1 D2 D3 D4 D5
ekonomi 0 1 40 38 1
pusing 4 5 1 3 30
keuangan 1 2 30 25 2
sakit 4 6 0 4 25
inflasi 8 1 15 14 1

Two documents are similar if they have similar vector!
D3 =[40, 1, 30, 0, 15]
D4 = [38, 3, 25, 4, 14]

Term-Document Matrix

Each cell is the count of word t in document d

ekonomi
pusing
keuangan
sakit

inflasi

Vector Space Model

D1 D2 D3 D4 D5
0 1 40 38 1
4 5 1 3 30
1 2 30 25 2
4 6 0 4 25
3 1 15 14 1

Vector of word “sakit” = [4, 6, 0, 4, 25]

Vector Space Model

Term-Document Matrix

Each cell is the count of word t in document d

D1 D2 D3 D4 D5
ekonomi 0 1 40 38 1
pusing 4 5 1 3 30
keuangan 1 2 30 25 2
sakit 4 6 0 4 25
inflasi 8 1 15 14 1

Two words are similar if they have similar vector!
pusing =[4, 5, 1, 3, 30]
sakit =[4, 6, 0, 4, 25]

Vector Space Model

Term-Context Matrix

* Previously, we use entire Documents as our Context of word

— document-based models capture semantic relatedness (e.g. “boat” —
“water”), NOT semantic similarity (e.g. “boat” — “ship”)

« We can get precise vector representation of word (for
semantic similarity task) if we use smaller context, i.e, Words
as our Context!

— Window of N words

e A word is defined by a vector of over counts of context
words.

Vector Space Model

Sample context of 4 words ...

No Potongan konteks 4 kata

... kekuatan ekonomi dan inflasi ...
... obat membuat sakit pusing ...
... sakit pening di kepala ...

... keuangan menipis serta inflasi ...

g B~ W NN B

Vector Space Model

Term-Context Matrix
 Sample context of 4 words ...

ekonomi obat sakit kepala keuangan
inflasi 2 0 0 0 3
pusing 0 1 6 6 1
pening 0 2 6 6 0
keuangan 2 0 0 0 4

Two words are similar in meaning if they have similar context vector!
Context Vector of “pusing” =10, 1,6, 6, 1, ...]
Context Vector of “pening” =[0, 2, 6, 6, 0, ...]

Vector Space Model

 Weighting: it practically works well... instead of
just using raw counts.

e For Term-Document matrix

— We usually use TF-IDF, instead of Raw Counts (only
TF)

* For Term-Context matrix
— We usually use Pointwise Mutual Information (PMI)

Word Analogy Task

* Father is to Mother as King is to ?
* Good is to Best as Smartis to ?
* Indonesia is to Jakarta as Malaysia is to ?

e |t turns out that the previous Word-Context based
vector model is good for such analogy task.

Vking - Vfather + Vmother = uneen

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Distributed Representations of
Words and Phrases and their Compositionality. NIPS, 1-9

Word Embeddings for Information Retrieval

* The two passages are
indistinguishable for the
guery term “Albuquerque”!

— Both contains the same

number of “Albuquerque”, i.e.

Only one!

* Word embeddings can help
us to distinguish them!

* Which one is the real one
talking about
“Albugquerque”??

— #terms in the document
related to “Albuquerque”

Albuguergue is the most populous city in the U.S. state of New
Mexico. The high-altitude city serves as the county seat of
Bernalillo County, and it is situated in the central part of the
state, straddling the Rio Grande. The city population is 557,169
as of the July 1, 2014, population estimate from the United
States Census Bureau, and ranks as the 32nd-largest city in the
U.S. The Metropolitan Statistical Area (or MSA) has a population
of 902,797 according to the United States Census Bureau's most
recently available estimate for July 1, 2013.

(a)

Allen suggested that they could program a BASIC interpreter for
the device; after a call from Gates claiming to have a working
interpreter, MITS requested a demonstration. Since they didn't
actually have one, Allen worked on a simulator for the Altair
while Gates developed the interpreter. Although they developed
the interpreter on a simulator and not the actual device, the
interpreter worked flawlessly when they demonstrated the
interpreter to MITS in Albuguergue, New Mexico in March 1975;
MITS agreed to distribute it, marketing it as Altair BASIC.

Nalisnick et al., “Improving Document Ranking with Dual Word Embedding”, WWW 2016

Some basics ...

Gradient Descent (GD)

Problem: carilah nilai x sehingga fungsi f(x) = 2x* + x® — 3x?
mencapai titik local minimum.

Misal, kita pilih x dimulai dari x=2.0:

30

25+

Algoritma GD konvergen

pada titik x = 0.699, yang 20|
merupakan local minimum. 15
10 Local minimum

| |

=2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 15

Gradient Descent (GD)
Algorithm:

Fort=12,..,N_,
Xig < X — f I(Xt)
If | f'(x,.1)| < & then return “converged on critical point"

ax *

If |, — .|| < & then return *“converged on x value"
If f(x.,,)> f(x)then return"diverging"

a, : learning rate atau step size pada iterasi ke-t
€: sebuah bilangan yang sangat kecil
N, batas banyaknya iterasi, atau disebut epoch jika iterasi selalu sampai akhir

Algoritma dimulai dengan menebak nilai x, !

Tips: pilih o, yang tidak terlalu kecil, juga tidak terlalu besar.

Gradient Descent (GD)

Kalau parameter-nya ada banyak ?

Carilah 6 = 0,, 6,, ..., 6, sehingga f(6,, 0,, ..., 8,) mencapai local
minimum !

while not converged :

(t+1) (t) (9 (t) Dimulai dengan menebak
0 <067 - f(@) nilaiawal®=06,,0,, ..., 0
1 1 g(t) 1) N
o

(t+1) (1) (t)
O 6" — 59@) f(6")

0

grEHl) « erft) . 60(0 f (e(t))

Multilayer Neural Network (Multilayer Perceptron)

Misal, ada 3-layer NN, dengan 3 input unit, 2 hidden unit,
dan 2 output unit.

1 (1)
X Wiy
(2)
OO
2

‘

X2 '
: } w2/ A
1 22

b(z) ; (2)
x3

+1 W), W2, bl1), b2 adalah parameter !

Multilayer Neural Network (Multilayer Perceptron)

Misal, untuk activation function, kita gunakan fungsi
hyperbolic tangent. f (x) = tanh(x)

Untuk menghitung output di hidden layer:
21(& :Wl(ll) X1 "‘Wl(zl) X2 +W1gl) X3+ bl(l)

@ _\WO ® Oy o B
22 _W21 Xl +W22 X2 +W23 X3 + b2

al = 1(2%)

(2) _ (2)
d,” = f (22) Ini hanyalah perkalian matrix !

o o o) &

(2) a7 @) Q) W11 W12 W13 bl
27 =W5X+b™ =1~ " IR

W, W,y W,

Multilayer Neural Network (Multilayer Perceptron)

Jadi, Proses feed-forward secara keseluruhan hingga
menghasilkan output di kedua output unit adalah:

@) _\W Oy 4 p®
%) — f(Z(z))

@) _\W @50 4 p@

h, , (x) =a" = softmax (z*)

X
Par: W(1)

f

Par: b(1)

J Par: W(2

softmax

Par: b?

2@ — eXp(Zi(g))

D exp(?)

|

5(3)

Multilayer Neural Network (Multilayer Perceptron)
Learning

Misal, Cost function kita adalah cross-entropy loss:
m adalah banyaknya training examples.

n-15 Sy

J(W, b)———ZZy., log(p,)+~ ZZZ(\N“)

i=1 jeC =1 i=1 j=1

Regularization terms

Multilayer Neural Network (Multilayer Perceptron)
Learning

Batch Gradient Descent

inisialisasi W, b
while not converged : Bagaimana cara menghitung
gradient ??
0

ORRYVAQ
Wi =W~ T JW,b)
ij

Backpropagation Algorithm

0
b =b" ~a 5 IW,b)

Neural Language Model (Bengio et al., 2003)

Main Goal: Language Model

Actually, their main goal is to develop a language model, i.e., conditional
probability of the next word given all the previous ones:

POW, [W W W, W)

So that, we can compute the likelihood of a whole document or sentence by
the product of the probabilies each word given its previous words:

Given a document or sentence W, W, , W5 ,..., Wy, W}

;
P Wy, we) = T [POw, [wy..w,w;)
t=1

N-Gram Language Model

In N-Gram language model, we often relax the conditional
probability of a word into just its n-1 previous words (Markov
Assumption):

P(Wt |Wt—1"'W1) ~ P(Wt |Wt—l"'Wt—n+1)

For example, using Bi-Gram:

P(i,learn,word, embedding) =
P(i |< start >)P(learn|i)P(word | learn)P(embedding | word)P(< end >| embedding)

Using MLE, we can estimate the parameter using Frequency

Counts:
count(W, W, ... W,)

count(w,_y...W_y.;)

P(Wt | Wt—l"'Wt—n+1) —

Problem with N-Gram

 There should be much more information in the sequence that
immediately precedes the word to predict than just the
identity of the previous couple of words.

* It’s NOT taking into account the “similarity” between words.

* For example, in the training data:

The cat is walking in the bedroom

 Then, the model *hould generalize&‘or t%e following sentence:

A dog was running in a room

WHY ? Dog-Cat, The-A, Bedroom-Room have similar semantic and grammatical roles !

Neural Language Model

Given a document or sentence W, W,, W,,..., W, _;, W,
Where each word belongs to a Vocabulary, w, eV

We want to learn good model for:

f (Wt s Wi_gseeny Wt—n+1) — P(Wt |Wt—l"'Wt—n+1)
= soft max(score(w,, context))

exp(score(w,, context))

- > exp(score(w;, context))
jev

context =w

t—n+117*

Wt -1

Neural Language Model

i-th output = P(w; = i | context)

We have Embedding/Projection Matrix
softmax C
((aee - - 2 8 - 288)] ,_
T 7 ~ T V[xm
’ ;, most| computation here \1
! I
F] ' i"' |V | n
\
1
tanh !
°e) | e
! m
I
. — mis size of word vector.
r
o+
Clw,a) Clwey) - C(i) = Rm

(ee o) ... (o) (ee o) —
~., Matrix C r / C(i) is a function that maps A Word i

shared parameters — into Its Vector

across words

index for wi_pi1 index for w,_2 index for w,_;
f(,w,_g,...,W,_,.,) = P(w, =1|context)
Score for a particular output: / =9(L,CW)., C(Wepy))

g is a neural network function.

P(Wt | Wt—l' : 'Wt—n+1)

Output T Feed-Forward Process
Layer
softmax | Par: b
exp(Y,,)
Hidden Par: U PO Wy W) = > exp(y;)
Layer - iV p yi
. Par: W
Par:d | tan
Y =b+Wx+U tanh(d + Hx)
Par: H
X =concat(C(w,,),...,C(W,_.,))
Projection Merge (concat vector)
Layer
_ T _/ Total Parameters:
Vi | e 6= (b,d,W,U,H,C)
Input o
Layer Ue RMXh b = Rlvl
Som C R deR"

/ /I\ W c R[\/|x(n—1)m

hx(n-1)m
Wi .- Wio Wiy HeR

P(W, | W W 1)

Output Training
Layer
softmax | Par: b
Training is achieved by looking © that maximizes
Hidden Par: U the following Cost Function:
Layer
Par: W
par-d | tanh Given training data Wy, Wy, Wa,..., W, W,
l T
Par: H J(w,..w;;0) = ?Z log f (W, W,_y,..., W,_y 13 0) i+ R(O)
t=1
Projection Merge (concat vector) /
Layer \ T / Regularization terms
. How? We can use Gradient Ascent!
|V | oo Par: C
ILZS/:: Ce e Iterative update using the following formula:
L m -

/ T ™" = 6% +058—89J(W1...W :0)
Winag .- Wi o Wiy /

Learning rate

Where are the Word Embeddings?

* The previous model actually aims at building the
language model.

— So, where is the Word Embedding model that we need?

* The answer is: If you just need the Word
Embedding model, you just need the matrix C

©

Where are the Word Embeddings?

» After all parameters (including C) are optimized, then
we can use C to map a word into its vector !

- 0.2
0.31
A Word w | > |V| Coee | >C(W)= !
weV IR -
- 0.76 |

C e R|v|><m C(w)eR"

Par: d

Par: U

tanh

Par: H

P(Wt | Wt—l"'Wt—n+1)
softmax | Par: b
Par: W — Computation in this area is very COSTLY!

Merge (concat vector)

i

e

W

t—n+1

|

~ 17

Wt—2

Par: C

t-1

Size of Vocabulary can reach 100.000 !

(Mikolov et al., 2013)
Computational Complexity of this model
per each training sample:

Q=(Nxm)+(Nxmxh)+(hx|V|)

/

Composition of projection layer
N words X size of vector m

Dominating Term!

Between projection
layer & hidden layer

Word2Vec (Mikolov et al., 2013)

Word2Vec

One of the most popular Word Embedding models
nowadays!

Computationally less expensive compared to the
previous model
There are two types of models:

— Continuous Bag of Words Model (CBOW)
— Skip-Gram Model

We seek a model for P(Wt | W,

Continuous Bag-of-Words

Bengio’s language model only
looks at previous words as a
context for predictions.

Mikolov’s CBOW looks at n words
before and after the target words.

— Non-linear hidden layer is also
removed.

— All word vectors get projected into the
same position (their vectors are
averaged)

“Bag-of-Words” is because the
order of words in the history does
not influence the projection.

W

W,

INPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

+1lll

W,

t+n

)

PROJECTION

OUTPUT

Continuous Bag-of-Words

P(Wt | Wt—n " 'Wt—1Wt+1Wt+n)

Output T

Layer
Par: b softmax

Par: W 1

Projection
Layer Merge (average)
Input |V| - Par: C
Layer
. m |

Feed-Forward Process

_exp(y,)
> exp(y;)

ieV

P (W | W Wy W W)

Yy =0D+WX
x = average(C(w,_,),C(w,_,),....C(w,,), C(w,,))

Total Parameters:

6=(b,W,C)

C e RVKm
W e R|V|><(2n)m

Continuous Bag-of-Words

P(Wt | Wt—n " 'Wt—1Wt+1Wt+n)

|

Output
Layer
Par: b softmax
Par: W 1

Projection
Layer Merge (average)
Input |V | .
Layer

Wen oo Weg Weyg oo

J(w,..

Par: C

l T
'WT ’ 8) — ? Z IOg P(Wt | Wt—n"'Wt—1Wt+1"'Wt+n) + R(@)‘
t=1

Training

Training is achieved by looking 8 that maximizes
the following Cost Function:

Given training data W, W, , W5 ,..., W, _;, W,

y

Regularization terms

Continuous Bag-of-Words

P(Wt | Wt—n " 'Wt—1Wt+1Wt+n)

Training
Output T Actually, if we use vanilla softmax, then the
Layer Hierarchical Softmax computational complexity is still costly.
1 Q=02Nxm)+(mx|V|)
Earsjeicuon Merge (average) To solve this problem, they use Hierarchical
Softmax layer. This layer uses a binary tree
_ T _/ representation of the output layer with |V|
C e e units.
A2 | Q = (2N xm) + (mx2log(|V |))
Input o - g
Layer
// mT ,_\ (Morin & Bengio, 2005)
Win ooo Wi Wipg oor Wy

Skip-Gram

* |Instead of predicting the current INPUT PROJECTION OUTPUT
word based on the context, it tries
to maximize classification of a word
based on another word in the
same sentence.

4
_,-"r
wi(t-1)
* Use each current word as an input /
Y,
Y
\
Y,
\
,
Y
\
x{

w(t-2)

to a log-linear classifier with g -
continuous projection layer, and
predict words within a certain
range before and after the current
word.

wit+1)

wit+2)

We seek a model for P(Wt+j | Wt)

Output
Layer

Projection
Layer

Input
Layer

VI

P(w

|

t+] |Wt)

softmax

Skip-Gram

Par: b

T Par: W

Par: C

Feed-Forward Process

exp(Y,,)

P(W+' | W) —
T exp(y;)
eV
Yo, = b +WXx
x=C(w)
Total Parameters:
6@ =(b,W,C)
C c R[\/|><m b e R|V|
W e RVK™

Output
Layer

Projection
Layer

Input
Layer

i

Skip-Gram

Training
P(w,; | w,)

Training is achieved by looking 8 that maximizes

T the following Cost Function:
Given training data W, W, , W,,..., W _,, W
softmax | Par: b g 11 '¥21 VY3 T-10 T

J(w,..w;;6)
Par: W

__Z Zlog P(w, t+] |Wt)+ R(6)

t=1 —c<j<c, =0

Par: C /

Regularization Terms

c is the maximum distance of the words, or WINDOW size

Reference: https://www.tensorflow.org/tutorials/word2vec
Skip-Gram
How to develop dataset?
For example, let’s consider the following dataset:
the quick brown fox jumped over the lazy dog

Using ¢ =1 (or window = 1), we then have dataset:

([the, brown], quick), ([quick, fox], brown), ([brown, jumped], fox), ...

Therefore, our (input, output) dataset becomes:

(quick, the), (quick, brown), (brown, quick), (brown, fox), ...

/ For example, P(w,,, =brown|w, = quick)

Use this dataset to learn P(W_; | W,) !

J (W,... W, Z > log P(w,,; |
w T t=1 —c<j<c,j=0

So that, the cost function is optimized!

Skip-Gram

Training
P(Wt+j |Wt)
Output) .
Layer Actually, if we use vanilla softmax, then the
computational complexity is still costly.
Hierarchical Softmax Q=Cx(m+mx|V])
Projection To solve this problem, they use Hierarchical
Layer Softmax layer. This layer uses a binary tree
representation of the output layer with | V|
units.
V" ™) panc Q=Cx(m+mx*log(|V |)
Input o) _ g
Layer

(Morin & Bengio, 2005)

= %3

Word2Vec + H-Softmax + Noise Contrastive
Estimation (Mikolov et al., 2013)

SOURCE: https://www.tensorflow.org/tutorials/word2vec

Previously

Standard CBOW and Skip-gram models use standard flat softmax layer in
the output.

This is very expensive, because we need to compute and normalize each

probability using the score for all other words in the Vocabulary in the
current context, at every training step.

4
Softmax classifier @ @ @ - @ -
2
=)
=3
1]
Q
o
~
Hidden layer S
(o8
=
> g(embeddings
: This picture is only CBOW.
Projection layer the cat sits on the Imat
\)
Y N

context/history h target w,

https://www.tensorflow.org/tutorials/word2vec

Solution?

 In the first paper, Mikolov et al. (2013) use Hierarchical
Softmax Layer (Morin & Bengio, 2005).

* H-Softmax replaces the flat softmax layer with a hierarchical
layer that has the words as leaves.

* This allows us to decompose calculating the probability of one
word into a sequence of probability calculations, which saves
us from having to calculate the expensive normalization over
all words.

Sebastian Ruder. On word embeddings - Part 2: Approximating the
Softmax. http://sebastianruder.com/word-embeddings-softmax

http://sebastianruder.com/word-embeddings-softmax

H-Softmax

 We can reason that at a tree's root node (Node 0), the probabilities of branching
decisions must sum to 1.

At each subsequent node, the probability mass is then split among its children,
until it eventually ends up at the leaf nodes, i.e. the words.

Node 0 We can now calculate the
po =1 probability of going right
/\ (or left) at a given node n

given the context c.

Node 1 Leaf w
m = poP(ge = 0) Plws) = ppPlgo = 1) v, is embedding in node n.
/\ P(right|n,c)=c(W.v,)
Leafl w, Leaf w-
P(uw)=pmP(q =0) Plwy) =pmPlq=1) -
P(left | n,c) =1-P(right|n,c)

Sebastian Ruder. On word embeddings - Part 2: Approximating the
Softmax. http://sebastianruder.com/word-embeddings-softmax

http://sebastianruder.com/word-embeddings-softmax

H-Softmax

* The probability of a word w given its context ¢, is then simply the product of the
probabilities of taking right and left turns respectively that lead to its leaf node.

* Example: (“ the ","dog ",“ and ", “ the ", " cat "

p(" cat " | context) = (1 - sigm(b + Vi,. h(x)))
x sigm(b2 + V2. h(x))

x sigm(b; + Vs,. h(x))

-
(CHORO)
<

-
-

e ooV’

“dog the' “and"” ‘cat he” "have" “b

(Hugo Lachorelle's Youtube lectures)

Sebastian Ruder. On word embeddings - Part 2: Approximating the httos: b h2v=BI5LTE rVWM
Softmanx. http://sebastianruder.com/word-embeddings-softmax ttps://www.youtube.com/watch?v= '

http://sebastianruder.com/word-embeddings-softmax
https://www.youtube.com/watch?v=B95LTf2rVWM

SOURCE: https://www.tensorflow.org/tutorials/word2vec

Noise Contrastive Estimation (NCE)

* In their second paper, the CBOW and skip-gram models are instead trained
using a binary classification objective (logistic regression) to discriminate
the real target words w, from k imaginary (noise) words w.

)
Noise classifier @ v @ @ @ " @

NCE in the output
layer, for CBOW.

Hidden layer

> g(embeddings)

Projection layer the cat sits on the Imat

https://en.wikipedia.org/wiki/Logistic_regression
https://www.tensorflow.org/tutorials/word2vec

