

Abstract—In this paper we present OWLizr, a system

that constructs formal knowledge representations using

the Web Ontology Language (OWL) from natural

language text in bahasa Indonesia. The design of

OWLizr is mainly concerned with the representation of

knowledge about real-world events using the reification

technique. Such knowledge, which is commonplace in

naturally occurring texts, is not typically handled by

logics for ontologies such as Description Logic. OWLizr

consists of four modules: the NLP Semantic Analyzer,

KB Generator, KB Reasoner, and SPARQL Query

Generator. We also developed an ontology to support the

knowledge representation and reasoning process in the

KB Generator and KB Reasoner. The NLP Semantic

Analyzer reuses the semantic analyzer program

developed by Mahendra [2]. Our system supports

question-answering (QA) on the knowledge base using

the SPARQL Query Generator module.

I. BACKGROUND

ANY sources of knowledge can be found

available as natural language text. One primary

example is the wealth of information available on the

Web. The Semantic Web research agenda aims to

create similar resources that can also be processed and

reasoned with by software agents. Naturally, one way

to populate the Semantic Web is to develop an

automated system that is capable of processing natural

language text on the Web and convert it into formally

represented knowledge using Semantic Web standards

and tools. Such a system should be able to retrieve

knowledge from a textual document and perform

automated reasoning on the extracted knowledge.

A. Previous Work

 There are several previous research works about

how to process natural language text, specifically

those written in bahasa Indonesia, into semantic

representations. Two examples are the works done by

Larasati [1] and Mahendra [2]. Both of these works

mainly focused on linguistic aspects, i.e. building the

syntactic and semantic apparatus that affords the

transduction of logical representations.

Larasati [1] presents a model of deep syntactic and

semantic processing to support QA in Bahasa

Indonesia. The model uses a unification-based

grammar and specifies lexical semantics for each

lexeme and semantic attachment rules for each

grammar rule using lambda-calculus notations. The

model implementation is in Prolog language and the

output knowledge is in the form of a set of

conjunctively-interpreted first order logic literals.

Mahendra [2] extended the model by adding a

number of axioms designed to encode useful

knowledge for answering questions, thus increasing

the inferential power of the QA system. The axioms

broadly fall into two categories, NLP axioms and

world knowledge axioms. The model also adopts a

simple ‘flat’ semantic representation [3], where a

logical expression is simply a conjunction of first

order logic literals.

B. NLP and Event Representation

One specific type of knowledge is event knowledge,

which concerns representation of events and

occurrences. Such knowledge, which is commonplace

in natural language texts, is not typically handled by

logics for ontologies such as Description Logic. There

are in fact many techniques to represent events. One

such technique is by using reification, which treats

events as objects. There exists a well-known

knowledge representation model based on this

reification, the so-called Neo-Davidsonian approach

[4]. It represents arguments of events with thematic

roles, e.g., agent, patient, theme, time, and location.

Figure 1 shows an example of semantic analysis using

the Neo-Davidsonian approach.

.

Fig. 1. Neo-Davidsonian Semantic Analysis

Our research calls on the fields of Natural Language

Processing (NLP) and Description Logic (DL) as its

foundations. NLP is a field in which text is parsed and

processed, so that machines can understand its

OWLizr: Knowledge Representation System for

Bahasa Indonesia Based on Web Ontology Language

Description Logic (OWL DL)

Fariz Darari, Adila Alfa Krisnadhi, and Ruli Manurung

Information Retrieval Laboratory

Faculty of Computer Science, Universitas Indonesia

Email: fariz@ui.ac.id, adila@cs.ui.ac.id, maruli@cs.ui.ac.id

M

ICACSIS 2010 ISSN: 2086-1796

293

meaning. The information sources for NLP are the

lexicon, grammar, and corpus. One popular NLP

technique is syntax-driven semantic analysis. It is

based on Frege's principle of compositionality, which

states that the meaning of a linguistic constituent is a

mapping function from the meaning of its parts [5].

The implementation of this technique was proposed

by Montague using lambda calculus with beta

reduction. Our research’s position is in the middle

between NLP (Septina [1] and Mahendra [2] works)

and DL (Franconi’s work [8]), acts as a bridge that

connects them.

C. Description Logic

Description Logic (DL) is a very promising

knowledge representation language. It has many

advantages over previous knowledge representation

languages, such as semantic networks and frames [6].

One of the implementations of DL is the Web

Ontology Language, or OWL specifically the OWL-

DL variant. OWL is a web ontology language

recommended by W3C, and is designed to support the

Semantic Web vision [7]. Our research utilizes OWL-

DL as the main language for knowledge

representation and reasoning. OWL-DL consists of

two main components, the TBox and ABox. The TBox

contains class and property definitions and axioms,

whereas the ABox contains concept and property

assertions.

In previous research, there is KODIAK, a

knowledge representation language for lexical

semantics using relation-based DL [8]. KODIAK

contains syntactic types such as Relations, Aspectuals,

and Absolutes, and basic operators such as Manifest,

Dominate, Instantiate, and Disjointness. For example,

the representation for the sentence “Giotto paints the

Sermon to the Birds” is shown in Figure 2.

Fig. 2. KODIAK Knowledge Representation

The relation paint manifests two aspectuals, Painter

and Painting. They are dominated by absolutes

PERSON and THING, which are disjoint with each

other. paint-1 is the instantiation of paint and

manifests the instances giotto, which is the Painter,

and sermon-to-the-birds, which is the Painting.

II. OWLIZR KNOWLEDGE REPRESENTATION

OWLizr mainly uses event as the knowledge

representation of a declarative sentence. We treat

events as objects. This is called reification. An event

can have an agent, patient, action, or location retrieved

from appropriate phrases in a sentence. For example,

“Budi buys a car” or “Budi membeli mobil” will have

“Budi” as an agent, “membeli” as an action, and

“mobil” as a patient. This approach is similar with the

Neo-Davidsonian approach, which represents

arguments of event as thematic roles.

OWLizr is also able to represent background

knowledge of events. The thematic roles such as agent,

person, location, or attribute can have background

knowledge, i.e., the underlying knowledge that

explains the definition of the objects. For example, an

agent or patient could be a person, or a non-living

object. Then, as we can see from the example above,

“Budi” will be defined as a person, and “mobil” will

be defined as a vehicle, which is a non-living object.

This approach is similar to the knowledge

representation of KODIAK, which from the example

above, states that giotto is a person and sermon-to-the-

birds is a thing [8]. OWLizr must be able to express

the knowledge representation of an event and the

background knowledge of every argument of that

event. This knowledge representation is implemented

in the OWLizr base ontology, which is shown in

Figure 3.

Fig. 3. OWLizr Base Ontology

DL knowledge is formed by a collection of classes,

properties, and instances. From the example, we know

that “Budi” is an instance from class “Person”. In

turn, the class “Person” itself is a subclass of the

“Living” class, where its definition is the class of

living things, such as animals, plants, or people. The

class can be built by using logical operators among

classes, such as intersection, union, or negation. Then,

the definition of “Living” or “LivingPhysicalObject”

class will be:

There are also various other classes, each of which has

its own definition, e.g., Time, Process, AbstractTerm,

Manner, Attribute, Quality, Quantity, Grade, and

Intensity. Together they form all the classes in the

ICACSIS 2010 ISSN: 2086-1796

294

base ontology.

 Next, we build properties on the ontology according

to the thematic roles of events. The technique is rather

straightforward: we designate a specific DL property

for every thematic role. The properties on DL can

have domain and range. For example, the property

“hasAction” has class “Event” for its domain and

class “Action” for its range. For some properties,

there are also inverse properties. For example, the

property “hasAction” has as its inverse property

“isActionOf”. The list of properties in the ontology is

shown in Table I.
TABLE I

 DL PROPERTIES

Property Domain Range

hasAction Event Action

hasAgent Event PhysicalObject,

AbstractTerm,

Process

hasPatient Event PhysicalObject,

AbstractTerm,

Process

hasLocation Event,

PhysicalObject

Location

isActionOf Action Event

isAgentOf PhysicalObject,

AbstractTerm,

Process

Event

isPatientOf PhysicalObject,

AbstractTerm,

Process

Event

isLocationOf Location Event,

PhysicalObject

III. OWLIZR ARCHITECTURE

OWLizr consists of four modules, i.e. the NLP

Semantic Analyzer, SPARQL Query Generator, KB

Generator, and KB Reasoner. Each module works

interdependently with each other. The NLP Semantic

Analyzer acts as a text processing tool, extracts the

semantic notations (also called canonical

representations) from natural language text. The KB

Generator transforms semantic notations into

knowledge form using OWL-DL and the KB

Reasoner discovers implicit knowledge from the

knowledge base. Finally, the SPARQL Query

Generator converts semantic notations from

interrogative sentences into a SPARQL query and

executes that query on the knowledge base. The

system itself has two modes of operation, i.e.

knowledge assertion mode and query mode. The

difference between the two modes is in the modules

which are invoked to process the semantic notations.

For the knowledge assertion mode, the modules

involved are the NLP Semantic Analyzer, KB

Generator, and KB Reasoner, whereas query mode

involves only the NLP Semantic Analyzer and

SPARQL Query Generator. The process on

knowledge assertion mode works sequentially as

follows: First, the text is processed by the NLP

Semantic Analyzer, parsed and translated into

semantic notations using syntax-driven semantic

analysis. Next, the semantic notations are used as

references for the KB Generator to assert knowledge.

Finally, the KB Reasoner infers new sound knowledge

from the asserted knowledge. The process on both the

KB Generator and the KB Reasoner is highly

dependent with the ontology model used by the

system.

On the other hand, the process on the query mode

works as follows: The question in natural language is

processed by the NLP Semantic Analyzer, producing

semantic notations which are divided into a question

variable and conditional variables. The SPARQL

Query Generator then translates the question variable

into a SELECT clause and the conditional variables

into WHERE clauses of the query. Finally, the query

is executed and we can obtain the answer for the

question.

Fig. 4. OWLizr Architecture

The KB Generator and KB Reasoner cannot be set

apart from the ontology for representing knowledge.

We developed the OWLizr ontology as two

components: the base ontology and the domain

ontology. The base ontology is an ontology that

contains base and general terms (see Section 2). The

vocabulary concerns events, qualities, quantities,

actions, and so on. The next component is the domain

ontology. A domain ontology is an ontology that

represents knowledge of some specific domains, such

as economy, education, military, and many more. The

base ontology acts as an upper ontology for the

domain ontology. The base ontology can be extended

with one or more domain ontologies. The ontology is

represented in OWL-DL and developed using the

Protégé-OWL editor with a top-down approach.

A. NLP Semantic Analyzer

The NLP Semantic Analyzer module reuses the

semantic analyzer program in previous research [2]. It

is used to parse the natural language text. Next, the

parse results are used to produce semantic notations.

The technique used is syntax-driven semantic analysis

with lambda-calculus. The implementation is in the

Prolog language. The module is divided into four

parts: lexicon, grammar, lexical semantics, and

semantic attachment rules. The lexicon contains a

word list and relevant linguistic information of the

words. The grammar specifies how to build sentences

ICACSIS 2010 ISSN: 2086-1796

295

by structures and constituents via syntax. The lexical

semantics stores semantics conveyed by individual

words in the lexicon. Lastly, semantic attachment

rules are instructions to build semantic representation

based on the grammar rules.

The NLP Semantic Analyzer works in two modes,

knowledge assertion mode and query mode. In the

knowledge assertion mode, the input is the declarative

sentence. The arguments of the semantic notations

produced by this mode are defined completely without

the question variable. For example, the result from

semantic analysis on the sentence “Pabrik

memproduksi mobil” or “The factory produces the

car” is the following semantic notation:

[location(x5,pabrik), event(x1,memproduksi),

agent(x1,x5), patient(x1,x6), objectx(x6,mobil)]

On the other hand, question answering mode

involves interrogative sentences as the input, and

produces semantic notations with one question

variable inside an “ans” predicate. The question

variable is usually reserved for an agent or patient. For

example, the semantic notation for “Apa yang

memproduksi mobil?” or “What produces the car?”

is:

[ans(x8), objectx(x2,x8), event(x4,memproduksi),

agent(x4,x2), patient(x4,x1), objectx(x1,mobil)]

B. KB Generator

The next module is the KB Generator. This module

parses and transforms semantic notations from the

NLP Semantic Analyzer into knowledge as OWL. The

resulting knowledge form is very dependent with the

ontology model of the system, i.e., the base ontology

and domain ontology. The KB Generator is

implemented using Java language and developed

using the Eclipse IDE. There are two functions of the

KB Generator, instance assertion and property

assertion. Instance assertion is the process of asserting

instances from semantic notations such as person,

object, attribute, quality, and so on. Property assertion

is the process of asserting properties that link two or

more instances. The subset mapping from semantic

notations into its knowledge form is shown in Tables

II and III.

The KB Generator asserts knowledge based on

semantic notations. The notations are processed based

on the predicates. The KB Generator has two types of

predicate lists according to their functions, one for

instance assertions and the other one for property

assertions. Instance assertion is executed first before

property assertion. The processes are different

between instance assertion and property assertion. The

instance assertion process reads predicates and

arguments of the notations, differentiates between

person, event, location, object, or other instance

assertion predicates, invokes instances into the

knowledge base, and then adds each instance in a hash

table with the first argument as the key. This hash

table is used as an index to maintain predicate-

argument structur. For example, the expected result

for the semantic notation

[location(x5,pabrik), event(x1,memproduksi),

agent(x1,x5), patient(x1,x6), objectx(x6,mobil)] is:

Factory(factory_1), Event(event_1), Car(car_1)

Next, property assertion processes the predicates

and arguments of predicates, differentiates between

agent, patient, theme, or other property assertion

predicates, and then invokes properties between

instances in the knowledge base based on the hash

table content by first and second arguments. The

process of the property assertion is shown in Figure 5

below.

Fig. 5. Property Assertion Process

C. KB Reasoner

The KB Reasoner has two main uses; consistency

checking and reasoning about implicit knowledge.

There is the possibility that the knowledge asserted is

not consistent. For example, “Mobil membeli radio”

or “The car buys the radio” will produce an error

because the domain ontology states that a car cannot

buy something – a reflection of so-called common

TABLE II

INSTANCE ASSERTION MAPPING TABLE

Semantic Notations Knowledge Form

event(x, ActionName) Event(event_ID),

hasAction(event_ID,

ActionName_action)

person(x, ID) Person(ID)

objectx(x, ClassName) ClassName(ClassName_ID)

attribute(x, AttributeName) AttributeName(AttributeName_ID)

location(x, ID) Location(ID)

location(x, LocationName) LocationName(LocationName_ID)

TABLE III

PROPERTY ASSERTION MAPPING TABLE

Semantic Notations Knowledge Form

agent(x, y) has Agent(x, y)

patient(x, y) hasPatient(x, y)

theme(x, y) hasTheme(x, y)

attrib(x, y) hasAttribute(x, y)

di(x, y) hasLocation(x, y)

ICACSIS 2010 ISSN: 2086-1796

296

sense knowledge, often referred to as a selectional

restriction. If we insist to assert this knowledge, the

knowledge base will be inconsistent. The consistency

checking is implemented using the Protege OWL API

computeInconsistentConcepts() function. The module

will check consistency after each property assertion

has been invoked on the knowledge base.

The second feature is reasoning. After the

knowledge assertion process, the KB Reasoner will

perform its function to obtain inferred knowledge. The

inference type is similar to instance checking on

Description Logic. The module reuses the function

getIndividualsBelongingToClass() from the Protégé-

OWL API. Finally, the output, which contains

knowledge from the text with inferred knowledge, is

successfully produced by OWLizr. Both consistency

checking and reasoning functions are executed on

Pellet, a free OWL DL Reasoner implemented on

Java.

D. SPARQL Query Generator

The SPARQL Query Generator module translates

semantic notations into SPARQL query, which is

formed by two components, a SELECT clause and a

WHERE clause. The SELECT clause lists the

variables to appear in the query results, and the

WHERE clause provides the basic graph pattern to

match against the data graph [9]. The module reuses

the Protégé-OWL API function, i.e.,

executeSPARQLQuery() to execute the query. The

whole process specifically works as follows:

1) The module translates semantic notations from

the NLP Semantic Analyzer. The results from the

NLP Semantic Analyzer consist of a question variable,

which is inside the “ans” predicate, and conditional

variables, which is inside other predicates other than

the “ans” predicate. Next, the question variable is

translated into a SELECT clause and the conditional

variables into the WHERE clause.

2) The module concatenates both SELECT clause

and WHERE clause, and then executes it. The results

will be given according to the query. Then, the query

process from the example in Section 3A is shown in

Figure 6.

IV. EVALUATION RESULTS

Our evaluation serves as a proof-of-concept for the

architecture, tests the ability to assert knowledge from

natural language text and to infer knowledge from

various ontological features. We developed a domain-

specific ontology for our evaluation process. The topic

is about simple economic activities. We chose this

domain because it is common and rather easy to

understand.

The domain ontology is developed iteratively and

manually by listing some terms of the domain, such as

"price" or "harga", "expensive" or "mahal", "buy" or

"membeli", "sell" or "menjual", "buyer" or "pembeli",

and "shop" or "toko", and then, implementing those

terms in OWL DL form. The domain ontology

extends the base ontology. Our domain ontology was

also carefully designed to highlight the inferential

power of OWL DL. We implemented ontology

features such as subclass, intersection, union, and

other features on class and property definitions. For

example, a buyer is a person who buys something. So

we define the buyer in the ontology as:

Buyer = Person and (isAgentOf some (hasAction some

Buy))

A. Knowledge Assertion Mode

After that, we tested the system to process natural

language text. The knowledge retrieval process

consists of two stages, assertion and inference. For

example, the retrieval process for the sentence “Anto

buys the car in the shop” or “Anto membeli mobil di

toko” are shown in the points below.

1) The NLP Semantic Analyzer processes the

sentence. The output is the following semantic

notation: [person(x6,anto), event(x4,membeli),

agent(x4,x6), patient(x4,x3), objectx(x3,mobil),

di(x4,x1), location(x1,toko)]”.

2) The system then processes the output from the

NLP Semantic Analyzer module. After this, there will

exist pairs [(x6, Person(anto)), (x4, Event(event_1)),

(x1, Shop(shop_1)), (x3, Car(car_1))] in the hash

table. The program will then produce the instance

assertion output on the console, as follows:

ASSERTED KNOWLEDGE:

Instance

Person(anto)

Event(event_1)

Car(car_1)

Shop(shop_1)

3) Next, the system asserts the properties. The

consistency checking function is also executed after

each assertion. There is no error, so the system will

Fig. 6. Query Process on OWLizr

ICACSIS 2010 ISSN: 2086-1796

297

produce the following output:

ASSERTED KNOWLEDGE:

Property

hasAction(event_1,buy_action)

hasAgent(event_1,anto)

hasPatient(event_1,car_1)

hasLocation(event_1,shop_1)

4) Lastly, the KB Reasoner infers some new

knowledge:

AbstractObject(event_1), Buyer(anto),

Product(car_1), PhysicalObject(anto),

PhysicalObject(shop_1),

PhysicalObject(car_1), Store(shop_1),

AutomotiveStore(shop_1),

NonLivingPhysicalObject(shop_1),

NonLivingPhysicalObject(car_1),

Location(shop_1), AutomotiveProduct(car_1),

LivingPhysicalObject(anto), Thing(event_1),

Thing(anto), Thing(car_1), Thing(shop_1)

 The inferred knowledge is acquired by

processing the ontology features with the asserted

knowledge. From the result above, the instance

“anto” can be included in the class “Buyer”,

“LivingPhysicalObject”, “PhysicalObject”, and

“Thing”. There are reasons for these cases. “anto”

is in the “Buyer” class because “anto” is a person

who has action “Buy”. Thus, it satisfies the

intersection of “Person” class and “(isAgentOf

some (hasAction some Buy)” anonymous class.

“anto” is also included in the

“LivingPhysicalObject”, “PhysicalObject”, and

“Thing” classes because the “Person” class in

which “anto” resides is the subclass from those

classes. So, the ontology features used are

intersection and subclass reasoning.

B. Query Mode

When we have executed assertion and knowledge

reasoning, we can now ask questions by operating

query mode. For example, if the question is “Siapa

yang membeli mobil?” or “Who buys the car?”, the

process will be:

1) The NLP Semantic Analyzer processes the

question. The input is “Siapa yang membeli mobil?”

and the given output is the semantic notation of the

question, i.e., [ans(x7), person(x5,x7),

event(x4,membeli), agent(x4,x5), patient(x4,x2),

objectx(x2,mobil)]”.

2) The SPARQL Query Generator then translates

the notation into SPARQL query form. The module

transforms “ans(x7)” into SELECT clause, i.e.,

“SELECT ?x7”, and the rest of the notation into the

WHERE clause, i.e., “WHERE { ?event :hasAction

:buy_action . ?event :hasAgent ?x7 . ?event

:hasPatient ?ins . ?ins rdf:type :Car }”. Next, the query

is concatenated and then executed. Finally, the system

returns the output "x7:Anto".

V. CONCLUSIONS

This research combines Natural Language

Processing (NLP) and Description Logic (DL) to build

OWLizr, a system to retrieve knowledge from texts

written in bahasa Indonesia. The value of this research

is not more on the experimental side, but rather

formalization attempt to natural language text. The

system can produce inferred knowledge by processing

ontology features, such as subclass, equivalence,

intersection, union, and negation, on the asserted and

inferred knowledge. The final result of the retrieval

process will be represented in the form of an OWL DL

knowledge base. The system also supports natural

language question-answering, and uses SPARQL for

querying the facts on the knowledge base. For future

work, we plan to implement TBox assertion, so that

we can construct a domain ontology automatically

from natural language texts. We also consider

integrating existing ontologies, e.g., SUMO, Cyc, or

DOLCE, in order to be implemented on OWLizr. For

the sake of expressivity, we can also increase the

ontology features up to OWL 2.

REFERENCES

[1] S. D. Larasati and R. Manurung, “Towards a Semantic

Analysis of Bahasa Indonesia for Question Answering,” in

Proceedings of the 10th Conference of the Pacific Association
for Computational Linguistics (PACLING 2007), Melbourne,

Australia, 19-21 September 2007
[2] R. Mahendra, S. D. Larasati, and Ruli Manurung, “Extending

an Indonesian Semantic Analysis-based Question Answering

System with Linguistic and World Knowledge Axioms,” in
Proceedings of the 22nd Pacific Asia Conference on

Language, Information, and Computation (PACLIC 2008),

pp.262-271, Cebu, Philippines, 20-22 November 2008.
[3] Hobbs, J. (1985). “Ontological Promiscuity”. Proceedings of

the 23rd Annual Meeting of the Association of Computational

Linguistics, (pp. 61-69)
[4] Parsons, T. (1990). Events in the Semantics of English: A

Study in Subatomic Semantics (Learning, Development, and

Conceptual Change). MIT Press.
[5] Manurung, H. M. (2007). Computational Semantics :

Processing Meaning from Natural Language Utterances.

Represented on Summer School on Computational Logic and
Logic Foundations of Computer Science, Hanoi University of

Technology, 31 July - 7 August.

[6] Baader, F., Calvanese, D., McGuinness, D., & Patel-
Schneider, P. (2003). The Description Logic Handbook:

Theory, Implementation, and Applications. Cambridge:

Cambridge University Press.
[7] McGuinness, D. L., & van Harmelen, F. (2004, February 10).

OWL Web Ontology Language Overview. Retrieved June 14,

2010, from W3C: http://www.w3.org/TR/owl-features/
[8] Franconi, E., & Rabito, V. (1994). A Relation-Based

Description Logic. In Working Notes of the 1994 Description

Logic Workshop, (pp. 55-60). Bonn, Germany

[9] Prud'hommeaux, E., & Seaborne, A. (2008, January 15).

SPARQL Query Language for RDF. Retrieved June 14, 2010,
from W3C: http://www.w3.org/TR/rdf-sparql-query

ICACSIS 2010 ISSN: 2086-1796

298

